由于机床床身在铸造及粗加工后,存在有残余应力,且残余应力不稳定性,造成应力松弛和应力的再分布,使工件产生变形影响机床精度,因此需要在粗加工后进行振动时效处理消除残余应力。机床铸件应用振动时效工艺,从近百件的床身中随机抽出两件进行残余应力振前、振后测量计算,结果发现振动时效使纵向平均应力水平降低32%,横向应力降低39%,不低于热时效的效果。其抗变形能力比热时效有所提高,精度变化值与热时效相比均小于0.005mm,符合工艺要求。振动时效工艺其原理是用振动消除残余应力,可达到热时效工艺的同样效果,并在许多性能指标上超过热时效。振动时效设备的使用可以帮助制造商发现并修复产品的问题和缺陷。安徽全自动振动时效厂家
振动时效工艺的简单程序:振动处理技术又称做振动消除应力,在我国又称做振动时效。它是将一个具有偏心重块的电机系统(称做激振器)安放在构件上,并将构件用橡皮垫等弹性物体支承,如图2.1所示。通过控制器起动电机并调节其转速,使构件处于共振状态。约经20~30分钟的振动处理即可达到调整残余应力的目的。振动测试系统和应变(或应力)测试系统,是在做振动时效工艺时,用来测幅频特性曲线、监测动应力幅值及其变化的。振动时效之所以能够部分地取代热时效,是由于该项技术具有一些明显的特点。经过振动处理的构件其残余应力可以被消除20%~80%左右,高拉应力区消除的比低应力区大。因此可以提高使用强度和疲劳寿命,降低应力腐蚀。可以防止或减少由于热处理、焊接等工艺过程造成的微观裂纹的发生。可以提高构件抗变形的能力,稳定构件的精度,提高机械质量。上海应力消除震动时效设备价格数码振动时效设备技术可以降低工件内部残余应力,用在要求提高材料机械性能和加工尺寸精度的场合。
振动时效对材料的影响是一个复杂的过程,它涉及到多个因素的相互作用。首先,振动会引起材料内部的应力分布变化。这种应力分布的变化可能导致材料的塑性变形、断裂或疲劳破坏。其次,振动还会影响材料的晶粒结构,导致晶粒的重排和晶界的迁移。这些变化可能会改变材料的力学性能、热性能和电性能等。振动时效对材料的影响可以通过多种方式进行研究和评估。一种常用的方法是进行振动寿命试验,通过在一定的振动条件下测试材料的寿命,以评估其抗振动时效性能。此外,还可以利用材料力学测试、显微镜观察、热分析等方法来研究振动时效的影响机制和变化规律。
振动时效设备对材料的振动时效过程具有重要的影响,它能够提高材料的性能。振动时效是一种通过对材料施加振动来改善其性能的热处理方法。这种方法适用于许多不同类型的材料,包括金属、陶瓷和复合材料等。振动时效设备能够提高材料的强度和硬度。振动时效过程中,材料会经历振动加载,这种加载可以引起材料内部的位错运动和再结晶,从而增加晶界的数量和长度。这些变化可以提高材料的强度和硬度,使其更加耐用和抗磨损。振动时效设备可以改善材料的韧性和断裂韧度。振动时效过程中,材料会经历周期性的应力和应变,这种应力和应变可以促使材料内部的微观缺陷(如孔洞和裂纹)闭合和愈合。通过减小和消除这些缺陷,材料的韧性和断裂韧度得到了提高,使其更加抗拉伸和抗冲击。振动时效设备可以对产品的可靠性和寿命进行预测。
许多研究和实践证明,用过载系数K所表示的零件原始残余应力和动应力(峰-峰)值之比,即K=动应力/残余应力,能体现振动时效工艺中他们间的依存关系,并能用来鉴定振动时效处理的有效性。资料指出:使工件尺寸精度稳定的K值为0.45左右为宜。如果动应力施加的比较小,则消除残余应力的效果比较差;如果动应力施加的太大,有可能超过工件的疲劳强度,甚至抗拉强度,引起工件疲劳强度的下降,甚至断裂。振动时效装置的内部软件系统已备自动判定动应力是否合适的功能,如果动应力不够,打印机会自动地打印出让您加大动应力的指令;如果动应力太大,系统会自动关机,避免引起不良后果,并通知操作者来减小动应力。所以使用V振动时效装置可令您放心。振动时效设备可以对产品的结构参数、材料强度等进行评估。震动时效品牌
振动时效设备的振动频率可以达到千赫兹级别。安徽全自动振动时效厂家
振动处理后,薄壁零件至少有一个残余应力检测区域的残余应力消除率大于20%、峰值下降率大于20%,或者均化率大于20%,则判定模态宽频振动消除残余应力处理工艺有效;模态宽频振动消除残余应力方法是对传统振动时效方法的创新,具有高频率、低动应力的特点,能够运用于薄壁零件半径加工之后。鉴于薄壁零件受残余应力的影响极其敏感,模态宽频振动消除残余应力的效果评定指标也更加严格。虽然针对残余应力检测的检测区域、测点数量、评估指标略有不同,但从可行性、操作性以及有效性的角度分析,残余应力检测法较其他两种方法,各项规定及指标更为清晰,能够为生产实际提供更多的工件信息,便于生产决策者快速判断工件的各项性能是否已满足实际需要,更适合普遍应用于工程实践中。安徽全自动振动时效厂家